El éxito de un proyecto de Business Intelligence (o de Big Data) es una puerta a la continuidad. Es la diferencia entre seguir evolucionando una plataforma analítica de acuerdo con una estrategia bien definida o la siembra de dudas respecto a la conveniencia de seguir con esa línea.

La situación en la que nos hallamos es la siguiente: Después de muchos esfuerzos, nuestro proyecto de Business Intelligence ha llegado a su fin. Los usuarios ya tienen acceso a todas las funcionalidades analíticas estipuladas en los requerimientos. Pero, ¿cómo saber si el proyecto ha sido un éxito?

 

Factores de medida de éxito

Tradicionalmente el éxito de un proyecto se mide en base a los siguientes factores:

  • Cumplimientos de fechas indicadas en la planificación
  • Cumplimiento de los requerimientos
  • Ajuste sobre el presupuesto inicial

Estos tres actores suelen ser la vara de medir utilizada para determinar el éxito de un proyecto.

Sin embargo hay un par de factores muy importantes que suelen ser obviados.

  • Adopción de la solución por parte de los usuarios
  • Incremento de la efectividad en la toma de decisiones

Adopción de la solución por parte de los usuarios

Si después de realizar un proyecto los usuarios no utilizan la solución proporcionada, el proyecto debe considerarse un fracaso.

La inversión realizada tanto económicamente cómo en recursos humanos bien merece dar su fruto. Sin un beneficio para la organización el proyecto se convierte en un foso donde se han arrojado horas y dinero. Y esto es cierto, independientemente de que se hayan cumplido todos los objetivos de negocio detallados en los requerimientos del proyecto.

En ese caso el retorno de inversión (ROI) del proyecto será nulo. Y por tanto, desde el punto de vista de gestión económica del proyecto, éste será un gran fiasco. Todo proyecto debe proporcionar un retorno. Y un proyecto que no sea usado por los usuarios no tendrá un retorno de la inversión.

Incremento de la efectividad en la toma de decisiones

Si el punto anterior mide de manera cuantitativa la introducción de la solución en la base de usuarios ahora no centraremos en un análisis cualitativo.

En este caso, queremos medir cómo afecta a la toma de decisiones y sus resultados la introducción de la nueva solución analítica.

Para poder realizar el análisis comparativo es necesario disponer de datos de efectividad en la toma de decisiones con el modelo antiguo (antes de la introducción de la nueva solución). Estos datos son necesarios porque los utilizaremos como grupo de control sobre el que podremos comparar los resultados.

Una vez la nueva solución esté en uso, deberemos obtener datos de eficiencia para así comparar el rendimiento de los empleados antes y después de la adopción de la nueva solución.

Sin embargo también es necesario realizar ese análisis con los usuarios que no hayan adoptado la nueva solución. ¿Por qué? Porque pueden darse situaciones ajenas a la nueva solución que afectan por igual a los grupos. Este análisis del grupo de control y del nuevo grupo nos permitirá identificar si las diferencias se deben única y exclusivamente a la nueva solución adoptada o a otros factores.

Si nuestro análisis muestra que el segundo grupo obtiene mejores resultados podremos deducir que éstos se deben a la adopción de la solución. En cambio si los resultados son peores que los del grupo de control, podremos deducir que la nueva solución está empeorando los resultados.

Además podremos cuantificar esa mejora o pérdida en función de la diferencia de los resultados antes y después de la adopción de la nueva solución en ambos grupos. Podría darse que ambos mejoraran su rendimiento. En este caso, el análisis porcentual de la mejora nos permitiría identificarla cuantitativamente.

Consideraciones

En la fase incial de la adopción de la nueva solución, es posible que los resultados obtenidos sean inferiores a los que puedan obtenerse a medio plazo. Este hecho deberá tenerse en cuenta a la hora de valorar el éxito del proyecto. Por eso es conveniente realizar estos análisis de manera periódica, y realizar un seguimiento y dar formación a los usuarios para que puedan obtener el mayor rendimiento de la solución. De esta manera, es posible conseguir mejorar los resultados obtenidos inicialmente.

Conclusión

El éxito de un proyecto de Business Intelligence es de vital importancia para la continuidad de proyectos en una organización. Y para poder determinar el éxito real del proyecto, es necesario utilizar los indicadores adecuados.

La adopción y la productividad son esenciales para medir el éxito de un proyecto de BI. Si los pasamos por alto, podríamos tener una percepción errónea de la realidad. Y eso sería un estrepitoso fracaso en lo que se refiere a gestión de proyectos.

Deja una respuesta