Monetización de los datos

 

El análisis de datos es usado principalmente para la obtención de respuestas que permitan mejorar la toma de decisiones dentro de una organización.

Un aspecto muy importante a tener en cuenta sobre ese análisis es el de los diferentes usos que se pueden dar a esos datos, tanto dentro como fuera de esa organización. Y es ahí, en el uso de los datos por entidades externas a dicha organización, donde el término «monetización de datos» adquiere una gran relevancia.

 

Ámbitos de aplicación de la información

Podemos distinguir dos ámbitos de aplicación de la información:

  • Interno (dentro de una organización)
  • Externo (fuera de ésta)

En el ámbito interno, los datos disponibles en la organización deben ser tratados y analizados para obtener información valiosa para los diferentes actores de los procesos de negocio internos. Es muy conveniente exponer esos datos en bruto y esa información derivada de éstos de manera transversal, para que todas las áreas de negocio puedan disponer de ellos. De esta manera, democratizando el acceso a la información, poniéndola al abasto de todos los empleados, se dispone de más herramientas para encontrar respuestas a nuestras preguntas. Y esto permite una mejor toma de decisiones.

Sin embargo, no hay que descuidar el ámbito externo en la explotación de esa información. Es decir, el uso de esos datos por organizaciones externas.

Monetización de los datos

Empecemos con unas preguntas:

  • ¿Pueden ser esos datos en bruto o esa información (producto del refinamiento de los datos) útiles para alguna organización externa?
  • ¿Qué valor tienen esos datos para esas organizaciones?
  • ¿Puede la organización propietaria de los datos beneficiarse de la venta de esos datos a terceros?

La monetización de datos o información consiste en la venta de éstos a organizaciones, y es la respuesta a las preguntas anteriores.

Cuando se dispone información que puede ser útil para otras organizaciones, ésta debe ser considerada como un producto con valor propio, que puede ser comercializado. Por tanto, es importante realizar un ejercicio visionario para encontrar ese mercado para los datos.

Por ejemplo, un municipio que disponga de sensores en la calle que permitan calcular el número y flujo de peatones en las calles, podría vender esa información a empresas de publicidad estática para poder determinar las mejores ubicaciones para la instalación de paneles publicitarios.

Respecto a cómo comercializar la información, el modelo puede ser el de venta puntual (e.g. Venta de todos los datos de un año en concreto) o por suscripción (e.g. Mensualmente se distribuyen los nuevos datos al comprador). Eso dependerá de las necesidades de los nuevos clientes y de la disponibilidad de los datos.

Aspectos éticos y legales

La venta de información debe ceñirse tanto a la ética como a la legalidad.

La cesión de información personal a terceros está regulada por la ley (ver GDPR – General Data Protection Regulation), con lo cual, las transacciones de intercambio de información deben cumplir los requisitos establecidos.

Además, hay que tener también en cuenta los aspectos éticos de la cesión y venta de información. El individuo debe dar consentimiento para la cesión o comercialización de sus datos personales, y debe ser capaz de modificarlos en cualquier momento. En este punto, afloran cuestiones como el hecho de cómo repercute esto sobre los datos previamente comercializados.

Estas cuestiones quedan fuera del alcance de este artículo y debe ser consultados con un profesional del ámbito legal.

En cualquier caso, si los datos personales no son necesarios, lo mejor es eliminar esa información en la distribución de información o anonimizarla para evitar riesgos innecesarios.

Conclusión

Los datos aportan la capacidad de mejorar la toma de decisiones. Pero también tienen un valor económico.

La venta de datos e información supone en sí un nuevo producto que puede ser comercializado.

Es de vital importancia cumplir con las normas legales y éticas a la hora de comercializar los datos de que disponen las organizaciones. La violación de éstas puede suponer la imposición de sanciones económicas muy importantes.

Efectividad de un proyecto de Business Intelligence

 

El éxito de un proyecto de Business Intelligence (o de Big Data) es una puerta a la continuidad. Es la diferencia entre seguir evolucionando una plataforma analítica de acuerdo con una estrategia bien definida o la siembra de dudas respecto a la conveniencia de seguir con esa línea.

La situación en la que nos hallamos es la siguiente: Después de muchos esfuerzos, nuestro proyecto de Business Intelligence ha llegado a su fin. Los usuarios ya tienen acceso a todas las funcionalidades analíticas estipuladas en los requerimientos. Pero, ¿cómo saber si el proyecto ha sido un éxito?

 

Factores de medida de éxito

Tradicionalmente el éxito de un proyecto se mide en base a los siguientes factores:

  • Cumplimientos de fechas indicadas en la planificación
  • Cumplimiento de los requerimientos
  • Ajuste sobre el presupuesto inicial

Estos tres actores suelen ser la vara de medir utilizada para determinar el éxito de un proyecto.

Sin embargo hay un par de factores muy importantes que suelen ser obviados.

  • Adopción de la solución por parte de los usuarios
  • Incremento de la efectividad en la toma de decisiones

Adopción de la solución por parte de los usuarios

Si después de realizar un proyecto los usuarios no utilizan la solución proporcionada, el proyecto debe considerarse un fracaso.

La inversión realizada tanto económicamente cómo en recursos humanos bien merece dar su fruto. Sin un beneficio para la organización el proyecto se convierte en un foso donde se han arrojado horas y dinero. Y esto es cierto, independientemente de que se hayan cumplido todos los objetivos de negocio detallados en los requerimientos del proyecto.

En ese caso el retorno de inversión (ROI) del proyecto será nulo. Y por tanto, desde el punto de vista de gestión económica del proyecto, éste será un gran fiasco. Todo proyecto debe proporcionar un retorno. Y un proyecto que no sea usado por los usuarios no tendrá un retorno de la inversión.

Incremento de la efectividad en la toma de decisiones

Si el punto anterior mide de manera cuantitativa la introducción de la solución en la base de usuarios ahora no centraremos en un análisis cualitativo.

En este caso, queremos medir cómo afecta a la toma de decisiones y sus resultados la introducción de la nueva solución analítica.

Para poder realizar el análisis comparativo es necesario disponer de datos de efectividad en la toma de decisiones con el modelo antiguo (antes de la introducción de la nueva solución). Estos datos son necesarios porque los utilizaremos como grupo de control sobre el que podremos comparar los resultados.

Una vez la nueva solución esté en uso, deberemos obtener datos de eficiencia para así comparar el rendimiento de los empleados antes y después de la adopción de la nueva solución.

Sin embargo también es necesario realizar ese análisis con los usuarios que no hayan adoptado la nueva solución. ¿Por qué? Porque pueden darse situaciones ajenas a la nueva solución que afectan por igual a los grupos. Este análisis del grupo de control y del nuevo grupo nos permitirá identificar si las diferencias se deben única y exclusivamente a la nueva solución adoptada o a otros factores.

Si nuestro análisis muestra que el segundo grupo obtiene mejores resultados podremos deducir que éstos se deben a la adopción de la solución. En cambio si los resultados son peores que los del grupo de control, podremos deducir que la nueva solución está empeorando los resultados.

Además podremos cuantificar esa mejora o pérdida en función de la diferencia de los resultados antes y después de la adopción de la nueva solución en ambos grupos. Podría darse que ambos mejoraran su rendimiento. En este caso, el análisis porcentual de la mejora nos permitiría identificarla cuantitativamente.

Consideraciones

En la fase incial de la adopción de la nueva solución, es posible que los resultados obtenidos sean inferiores a los que puedan obtenerse a medio plazo. Este hecho deberá tenerse en cuenta a la hora de valorar el éxito del proyecto. Por eso es conveniente realizar estos análisis de manera periódica, y realizar un seguimiento y dar formación a los usuarios para que puedan obtener el mayor rendimiento de la solución. De esta manera, es posible conseguir mejorar los resultados obtenidos inicialmente.

Conclusión

El éxito de un proyecto de Business Intelligence es de vital importancia para la continuidad de proyectos en una organización. Y para poder determinar el éxito real del proyecto, es necesario utilizar los indicadores adecuados.

La adopción y la productividad son esenciales para medir el éxito de un proyecto de BI. Si los pasamos por alto, podríamos tener una percepción errónea de la realidad. Y eso sería un estrepitoso fracaso en lo que se refiere a gestión de proyectos.